Copied to
clipboard

G = C62:6Dic3order 432 = 24·33

5th semidirect product of C62 and Dic3 acting via Dic3/C2=S3

non-abelian, soluble, monomial

Aliases: C62:6Dic3, (C3xC6).9S4, (C6xA4).1S3, C32:A4:2C4, C6.12(C3:S4), (C3xA4):1Dic3, (C2xC62).9S3, C32:2(A4:C4), C22:(He3:3C4), C3.3(C6.7S4), C23.(He3:C2), C2.1(C32:S4), (C2xC32:A4).2C2, (C22xC6).1(C3:S3), (C2xC6).1(C3:Dic3), SmallGroup(432,260)

Series: Derived Chief Lower central Upper central

C1C2xC6C32:A4 — C62:6Dic3
C1C22C2xC6C62C32:A4C2xC32:A4 — C62:6Dic3
C32:A4 — C62:6Dic3
C1C6

Generators and relations for C62:6Dic3
 G = < a,b,c,d | a6=b6=c6=1, d2=c3, ab=ba, cac-1=ab-1, dad-1=a2b3, cbc-1=dbd-1=a3b4, dcd-1=c-1 >

Subgroups: 489 in 98 conjugacy classes, 21 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C6, C6, C2xC4, C23, C32, C32, Dic3, C12, A4, C2xC6, C2xC6, C22:C4, C3xC6, C3xC6, C2xDic3, C2xC12, C2xA4, C22xC6, C22xC6, He3, C3xDic3, C3xA4, C62, C62, C6.D4, C3xC22:C4, A4:C4, C2xHe3, C6xDic3, C6xA4, C2xC62, He3:3C4, C32:A4, C3xC6.D4, C3xA4:C4, C2xC32:A4, C62:6Dic3
Quotients: C1, C2, C4, S3, Dic3, C3:S3, S4, C3:Dic3, A4:C4, He3:C2, C3:S4, He3:3C4, C6.7S4, C32:S4, C62:6Dic3

Smallest permutation representation of C62:6Dic3
On 36 points
Generators in S36
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 4 7 2 3 8)(5 11 10 6 12 9)(13 23 14 24 15 22)(16 21 17 19 18 20)(25 29 27)(26 30 28)(31 35 33)(32 36 34)
(1 17 30 2 20 27)(3 16 28 4 19 25)(5 13 35 6 24 32)(7 18 26 8 21 29)(9 22 34 10 14 31)(11 23 36 12 15 33)
(1 6 2 5)(3 11 4 12)(7 9 8 10)(13 27 24 30)(14 29 22 26)(15 25 23 28)(16 33 19 36)(17 35 20 32)(18 31 21 34)

G:=sub<Sym(36)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,4,7,2,3,8)(5,11,10,6,12,9)(13,23,14,24,15,22)(16,21,17,19,18,20)(25,29,27)(26,30,28)(31,35,33)(32,36,34), (1,17,30,2,20,27)(3,16,28,4,19,25)(5,13,35,6,24,32)(7,18,26,8,21,29)(9,22,34,10,14,31)(11,23,36,12,15,33), (1,6,2,5)(3,11,4,12)(7,9,8,10)(13,27,24,30)(14,29,22,26)(15,25,23,28)(16,33,19,36)(17,35,20,32)(18,31,21,34)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,4,7,2,3,8)(5,11,10,6,12,9)(13,23,14,24,15,22)(16,21,17,19,18,20)(25,29,27)(26,30,28)(31,35,33)(32,36,34), (1,17,30,2,20,27)(3,16,28,4,19,25)(5,13,35,6,24,32)(7,18,26,8,21,29)(9,22,34,10,14,31)(11,23,36,12,15,33), (1,6,2,5)(3,11,4,12)(7,9,8,10)(13,27,24,30)(14,29,22,26)(15,25,23,28)(16,33,19,36)(17,35,20,32)(18,31,21,34) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,4,7,2,3,8),(5,11,10,6,12,9),(13,23,14,24,15,22),(16,21,17,19,18,20),(25,29,27),(26,30,28),(31,35,33),(32,36,34)], [(1,17,30,2,20,27),(3,16,28,4,19,25),(5,13,35,6,24,32),(7,18,26,8,21,29),(9,22,34,10,14,31),(11,23,36,12,15,33)], [(1,6,2,5),(3,11,4,12),(7,9,8,10),(13,27,24,30),(14,29,22,26),(15,25,23,28),(16,33,19,36),(17,35,20,32),(18,31,21,34)]])

38 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F4A4B4C4D6A6B6C6D6E6F6G···6M6N6O6P12A···12H
order122233333344446666666···666612···12
size1133116242424181818181133336···624242418···18

38 irreducible representations

dim11122223333336666
type++++--++-
imageC1C2C4S3S3Dic3Dic3S4A4:C4He3:C2He3:3C4C32:S4C62:6Dic3C3:S4C6.7S4C32:S4C62:6Dic3
kernelC62:6Dic3C2xC32:A4C32:A4C6xA4C2xC62C3xA4C62C3xC6C32C23C22C2C1C6C3C2C1
# reps11231312244441122

Matrix representation of C62:6Dic3 in GL3(F13) generated by

1200
0100
009
,
1000
030
0010
,
0120
0012
1200
,
800
008
080
G:=sub<GL(3,GF(13))| [12,0,0,0,10,0,0,0,9],[10,0,0,0,3,0,0,0,10],[0,0,12,12,0,0,0,12,0],[8,0,0,0,0,8,0,8,0] >;

C62:6Dic3 in GAP, Magma, Sage, TeX

C_6^2\rtimes_6{\rm Dic}_3
% in TeX

G:=Group("C6^2:6Dic3");
// GroupNames label

G:=SmallGroup(432,260);
// by ID

G=gap.SmallGroup(432,260);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,14,170,675,353,9077,2287,5298,3989]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^6=1,d^2=c^3,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^2*b^3,c*b*c^-1=d*b*d^-1=a^3*b^4,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<